
Journal of Data Science 13(2015), 241-260 

 The Kumaraswamy Gompertz distribution  

  
Raquel C. da Silvaa , Jeniffer J. D. Sanchezb, F ábio P. Limac, Gauss M. Cordeirod  
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Abstract: We introduce the four-parameter Kumaraswamy Gompertz distribution. 

We obtain the  moments, generating and quantilefunctions, Shannon and R ényi 

entropies, mean deviations and Bonferroni and Lorenz curves. We provide a 

mixture representation for the density function of the order statistics. We discuss 

the estimation of the model parameters by maximum likelihood. We provide an 

application a real data set that illustrates the usefulness  of the new model. 

 

Key words: Maximum likelihood, Mean  deviation, Moment, Survival data, 

Quantile function. 

 

1. Introduction 

 

The Gompertz model is a generalization of the exponential distribution and it is commonly 

used in many applied problems, particularly in lifetime data analysis. This model is considered 

for the analysis of survival data in some fields such as biology, computer and marketing 

science. If 𝑍 has the Gompertz distribution with parameters θ > 0 and γ > 0, denoted by 

𝑍 ~ 𝐺𝑜(𝜃, 𝛾), 𝑍 has the cumulative distribution function  (cdf ) given by 

 

𝐺𝜃,𝛾(𝑧) = 1 − 𝑒𝑥𝑝 {−
𝜃

𝛾
(𝑒𝛾𝑧 − 1)} , 𝑧 > 0                                      (1) 

and probability density  function  (pdf ) 

 

𝑔𝜃,𝛾(𝑧) = 𝜃𝑒𝑥𝑝 {𝛾𝑧 −
𝜃

𝛾
(𝑒𝛾𝑧 − 1)}.                                           (2) 

 
Note that the Gompertz distribution is a generalization of the exponential distribution, this 

is, equation (2) reduces to θ exp(−θz) when γ → 0. The properties of the Gompertz distribution 
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have been studied by many authors in recent years. Pollard and Valkowincs (1992) were the first 

to study this distribution thoroughly. However, their results are true only in the case when the 

initial level of mortality is very close to zero. Kunimura (1998) obtained similar conclusions and 

determined the moment generating function (mgf ) of Z is terms of the incomplete  and complete 

gamma functions.  Willemse and Koppelaar (2000) reformulated the Gompertz model to reforce 

mortality and derived relationships for this formulation. Willekens (2002) provided connections 

among the Gompertz, Weibull and type I extreme value distributions. Later, Marshall and Olkin 

(2007) described the negative Gompertz distribution. El-Gohary et al. (2013) proposed an 

extension of this distribution. 

 

In this paper, we study a new four-parameter model called the Kumaraswamy Gompertz 

(“KwGo” for short) distribution. The paper is organized as follows. In Section 2, we define the 

density and failure rate functions of the KwGo distribution. In Sections 3 to 8, a range of 

mathematical properties in terms of the proposed model is investigated. These include the density 

expansion, moments, mgf, Shannon and  Rényi entropies, mean deviations, Bonferroni and 

Lorenz curves, quantile function and some properties  of the order statistics. In Section 9, we 

present the estimation procedure using the method of maximum likelihood. An application of the 

new model to a real data set is illustrated in Section 10. Finally, some concluding remarks are 

given in Section 11. 

 

 

2. The KwGo distribution 

 
The Kumaraswamy (𝐾𝑤) model introduced by Kumaraswamy (1980) is a two-parameter 

distribution on the interval (0, 1) whose cdf is given by 

 

𝛱(𝑥; 𝑎, 𝑏) = 1 − (1 − 𝑥𝑎)𝑏 , 𝑥 𝜖 (0,1),                                                   (3) 

where 𝑎 >  0 and 𝑏 >  0 are shape parameters. The pdf corresponding to (3) is 

 

𝜋(𝑥; 𝑎, 𝑏) = 𝑎𝑏𝑥𝑎−1(1 − 𝑥𝑎)𝑏−1, 𝑥 𝜖 (0,1). 

 

The reader is referred to Jones (2009) for further details on the Kw distribution. 

For any baseline cumulative function 𝐺(𝑥)   and density function 𝑔(𝑥)  =  𝑑𝐺(𝑥)/𝑑𝑥 , 

Cordeiro and  de Castro (2011) proposed the Kumaraswamy G (“𝐾𝑤𝐺”  for short)  distribution 

with  pdf 𝑓 (𝑥) and cdf 𝐹(𝑥) given by 

𝑓(𝑥) = 𝑎 𝑏 𝑔(𝑥)𝐺𝑎−1(𝑥){1 − 𝐺 𝑎(𝑥)}𝑏−1                                                 (4) 

and 

𝐹(𝑥) = 1 − {1 − 𝐺𝑎(𝑥)}𝑏,                                                        (5) 
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respectively. The 𝐾𝑤𝐺 distribution has the same parameters of the 𝐺 distribution plus two 

ad- ditional shape parameters 𝑎 >  0 and 𝑏 >  0. For 𝑎 =  𝑏 =  1, the 𝐺  distribution is a 

basic exemplar of the  𝐾𝑤𝐺 distribution with  a continuous crossover towards cases with 

different shapes (e.g., a particular combination of skewness and kurtosis). The 𝐾𝑤𝐺 family of 

densities (4) allows for greater flexibility of its tails and can be widely applied in many areas 

of biology and engineering. For a detailed survey of this family, the reader is referred to 

Cordeiro and de Castro (2011) and Nadarajah et al.  (2012). 

 
The four-parameter 𝐾𝑤𝐺𝑜 cdf is defined from (5) by taking  𝐺(𝑥)  to be equal to the cdf 

(1). Then, the 𝐾𝑤𝐺𝑜 cdf becomes 

 

𝐹(𝑥) = 1 − [1 − (1 − 𝑒𝑥𝑝 {−
𝜃

𝛾
(𝑒𝛾𝑥 − 1)})

𝑎
]
𝑏

.                                (6) 

 

Here, we have three positive shape parameters 𝜃, 𝑎 and 𝑏 and a positive scale parameter 

𝛾. The pdf and the hazard rate function (hrf ) corresponding  to (6) (for 𝑥 >  0) are given by 

 

𝑓(𝑥) = 𝑎 𝑏 𝜃 𝑒𝑥𝑝 {𝛾𝑥 − 
𝜃

𝛾
(𝑒𝛾𝑥 − 1)} [1 −  𝑒𝑥𝑝 {− 

𝜃

𝛾
(𝑒𝛾𝑥 − 1)}]

𝑎−1

                 (7) 

× [1 − (1 − 𝑒𝑥𝑝 {− 
𝜃

𝛾
(𝑒𝛾𝑥 − 1)})

𝑎

]

𝑏−1

 

and 

ℎ(𝑥) =
𝑎 𝑏 𝜃 𝑒𝑥𝑝 {𝛾𝑥 − 

𝜃
𝛾
(𝑒𝛾𝑥 − 1)} [1 −  𝑒𝑥𝑝 {− 

𝜃
𝛾
(𝑒𝛾𝑥 − 1)}]

𝑎−1

1 − (1 −  𝑒𝑥𝑝 {− 
𝜃
𝛾
(𝑒𝛾𝑥 − 1)})

𝑎                  (8) 

 

respectively. Figures 1 and 2 display some plots of the pdf and hrf of the proposed 

distribution for some parameter values. 
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Figure 1: Plots of the pdf (7) for some parameter values. 
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Figure 2: Plots of the hrf (8) for some parameter values. 

 

Hanceforth, a random variable 𝑋 having density function (7) is denoted 

𝑋 ~ 𝐾𝑤𝐺𝑜(𝑎, 𝑏, 𝜃, 𝛾). 

 

3.  Density expansion 

 
Equations (6) and (7) are straightforward to compute using modern computer resources with 

analytic and numerical capabilities. However, we can express 𝐹(𝑥) and 𝑓(𝑥) in terms of infinite 

weighted sums of cdf’s and pdf’s of the 𝐺𝑜 distributions. Using the power series for |z| < 1 and 

𝛼 > 0 

(1 − 𝑧)𝛼 =∑(−1)𝑗 (
𝛼

𝑗
) 𝑧𝑗 ,

∞

𝑗=0

 

we can rewrite 𝐹(𝑥) as 

𝐹(𝑥) = 1 −∑(−1)𝑘 (
𝑏

𝑘
) [1 −  𝑒𝑥𝑝 {− 

𝜃

𝛾
(𝑒𝛾𝑥 − 1)}]

𝑘𝑎

.

∞

𝑘=0

 

After some algebra, we obtain 
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𝐹(𝑥) =∑𝑡𝑗𝐺(𝑗+1)𝜃,𝛾(𝑥),

∞

𝑗=0

                                                 (9) 

where (for 𝑗 ≥ 0) 

𝑡𝑗 = 𝑡𝑗(𝑎, 𝑏) = ∑(−1)𝑘+𝑗 (
𝑏

𝑘 + 1
)(
(𝑘 + 1)𝑎

𝑗 + 1
)                      (10)

∞

𝑘=0

 

and 𝐺(𝑗+1)𝜃,𝛾(𝑥) is the 𝐺𝑜 cdf with parameters (𝑗 +  1)𝜃 and 𝛾. By differentiating (9), the 

density function of 𝑋 can be expressed as 

𝑓(𝑥) =∑𝑡𝑗𝑔(𝑗+1)𝜃,𝛾(𝑥),

∞

𝑗=0

                                            (11)  

where 𝑔(𝑗+1)𝜃,𝛾(𝑥) is the 𝐺𝑜 pdf with parameters (𝑗 +  1)𝜃 and 𝛾. 

Mathematical properties for the 𝐾𝑤𝐺𝑜 distribution can be obtained from equation  (11) and 

those of the 𝐺𝑜 distribution. 

 

 

4. Moments and Generating function 

 
The 𝑛-th ordinary moment of 𝑋  is given by 

𝛦(𝑋𝑛) =∑𝑡𝑗𝛦(𝑌𝑗
𝑛),

∞

𝑗=0

 

where 𝑌𝑗
  

∼  𝐺𝑜(𝜃(𝑗 +  1), 𝛾).  The 𝑛-th moment of 𝑌𝑗
  
is given by 

 

𝛦(𝑌𝑗
𝑛) =

𝑛!

𝛾𝑛
𝑒(𝑗+1)

𝜃
𝛾⁄ 𝐸1

𝑛−1 (
(𝑗 + 1)𝜃

𝛾
), 

where 

𝐸1
𝑛−1(𝑧) = ∑

1

(−𝑘)𝑛
(−𝑧)𝑘

𝑘!
+
(−1)𝑛

𝑛!
∑ (

𝑛

𝑘
) 𝑙𝑜𝑔(𝑧)𝑛−1𝛹𝑘

∞

𝑘=0

.

∞

𝑘=1

                (12) 

Here the first term is a power series of the generalized integral-exponential function 

(Milgram,1985) and 

𝛹𝑛 = 𝑙𝑖𝑚
𝑡→0

∑(
𝑛 − 1

𝑙
)𝛤(1 − 𝑡)𝑛−1−𝑙𝜓𝑛−1(1 − 𝑡),

𝑛−1

𝑙=0
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where 𝜓𝑛(𝑧) =
𝑑𝑛

𝑑𝑧𝑛
𝜓(𝑧) denotes the polygamma function. So Ε(𝑋𝑛) reduces to 

𝛦(𝑋𝑛) =  
𝑛!

𝛾𝑛
∑𝑡𝑗

∞

𝑗=0

𝑒(𝑗+1)
𝜃
𝛾⁄ 𝐸1

𝑛−1 (
(𝑗 + 1)𝜃

𝛾
). 

The  mgf of 𝑋  can  be  expressed  from  (11)  as  a  linear  combination of the  mgf ’s of 

the  𝐺𝑜 distributions as follows 

𝑀𝑋(𝑡) =∑𝑡𝑗

∞

𝑗=0

𝑀(𝑗+1)𝜃,𝛾(𝑡), 

where 𝑀(𝑗+1)𝜃,𝛾

 

(𝑡) is the 𝐺𝑜 mgf with parameters (𝑗 + 1)𝜃 and 𝛾 given by 

𝑀(𝑗+1)𝜃,𝛾

 

(𝑡) =
(𝑗 + 1)𝜃

𝛾
𝑒(𝑗+1)

𝜃
𝛾⁄ 𝐸𝑡

𝛾⁄
(
(𝑗 + 1)𝜃

𝛾
), 

where 

𝐸𝑡
𝛾⁄
(
(𝑗 + 1)𝜃

𝛾
) = (

(𝑗 + 1)𝜃

𝛾
)

𝑡
𝛾
−1

𝛤 (1 −
𝑡

𝛾
,
(𝑗 + 1)𝜃

𝛾
) 

and Γ(𝑐, 𝑥) = ∫ 𝜐𝑐−1𝑒−𝜐𝑑𝜐
∞

𝑥
 is the complementary incomplete gamma function. 

 

 

5. Quantile function 

 

The 𝐾𝑤𝐺𝑜 quantile function, say 𝑄(𝑢)  =  𝐹−1(𝑢), is given by 

𝑥 = 𝑄(𝑢) =
1

𝛾
𝑙𝑜𝑔 [1 −

𝛾

𝜃
𝑙𝑜𝑔(1 − [1 − (1 − 𝑢)

1
𝑏]

1
𝑎
)], 

where 𝑢 𝜖 (0,1). 

The effect of the shape parameters a and b on the skewness and kurtosis of the new 

distribution can be considered based on quantile measures. The shortcomings of the 

classical skewness and kurtosis measures are well-known. One of the earliest skewness 

measures to be suggested is the Bowley skewness (Kenney and Keeping, 1962) given by 

𝐵 =
𝑄(3 4⁄ ) + 𝑄(

1
4⁄ ) − 𝑄(

1
2⁄ )

𝑄(3 4⁄ ) − 𝑄(
1
4⁄ )

. 

Since only the middle two quartiles are considered and the outer two quartiles are ignored, 

this adds robustness to the measure. The Moors kurtosis is based on octiles 
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𝑀 = 
𝑄(7 8⁄ ) − 𝑄(

5
8⁄ ) + 𝑄(

3
8⁄ ) − 𝑄(

1
8⁄ )

𝑄(6 8⁄ ) − 𝑄(
2
8⁄ )

. 

The measures 𝐵 and 𝑀 are less sensitive to outliers and they exist even for distributions 

without moments. In Figures 3 and 4, we plot the measures 𝐵  and  𝑀 for the 𝐾𝑤𝐺𝑜 distribution 

as functions of 𝑎 and 𝑏 for fixed values of the other parameters. 

 

 
6. Mean Deviations 

 
The mean deviations of 𝑋 about the mean 𝛿1 and about the median  𝛿2 are given by 

 

𝛿1 = 𝐸(|𝑋 −  𝜇|) = 2𝜇 𝐹(𝜇) − 2𝑇(𝜇) and 𝛿2 = 𝐸(|𝑋 −  𝑀|) = 𝜇 − 2 𝑇(𝑀), 

respectively, where 𝜇 = E(X) and 𝑀 = median(X) is given by 

 

𝑀 = 𝛾−1 𝑙𝑜𝑔[ 1 − 𝑙𝑜𝑔[ 1 − (1 − 2−1 𝑏⁄ )1 𝑎⁄ ]𝜃−1𝛾], 

 

 

Figure 3: (a) Skewness of 𝑋 as function of 𝑎 for some values of 𝑏 and (b) skewness of 𝑋 as function of 𝑏 

for some values of 𝑎. 
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Figure 4: (a) Kurtosis of 𝑋 as function of 𝑎 for some values of 𝑏 and (b) kurtosis of 𝑋 as function of 𝑏 for 

some values of 𝑎. 

F(𝜇) comes from (6) and T(z) is given by 

 

𝑇(𝑧) =∑𝑤𝑖𝐽𝑖(𝑧)

∞

𝑖=0

, 

where 

𝐽𝑖(𝑧) =  (𝑖 + 1)∑
−1𝑘+𝑗𝑎𝜃𝑘+1[1+𝑒(𝑘+1)𝛾𝑧{(𝑘+1)𝛾 𝑧 −1}]

(𝑗+1)−𝑘𝛾𝑘+2(𝑘+1)2 𝑘!
∞
𝑗,𝑘=0 (

(𝑖 + 1)𝑎 − 1
𝑗

).         (13) 

 
Equation (13) can be used to determine Bonferroni and Lorenz curves. They are defined for 

a given probability 𝑝 by 𝐵(𝑝) = T(q)/(pμ) and 𝐿(𝑝) = T(q)/μ, respectively, where 

 

𝑞 = 𝛾−1 𝑙𝑜𝑔[1 − 𝑙𝑜𝑔[1 − (1 − (1 − 𝑝)−1 𝑏⁄ )1 𝑎⁄ ]𝜃−1𝛾]. 
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7. Order Statistics 

 
The order statistics and their moments are one of the most fundamental tools in non-

parametric statistics and inference. The pdf and cdf of the 𝑖-th order statistic, say 𝑋𝑖:𝑛, are given 

by 

 

𝑓𝑖:𝑛(𝑥) =
1

𝐵(𝑖, 𝑛 − 𝑖 + 1)
∑(−1)𝑠 (

𝑛 − 𝑖
𝑠
) 𝑓(𝑥)𝐹(𝑥)𝑖+𝑠−1

𝑛−𝑖

𝑠=0

 

                (14) 
and 

 

𝐹𝑖:𝑛(𝑥) =
1

𝐵(𝑖, 𝑛 − 𝑖 + 1)
∑

(−1)𝑠

𝑖 + 𝑠
(
𝑛 − 𝑖
𝑠
)𝐹(𝑥)𝑖+𝑠

𝑛−𝑖

𝑠=0

, 

                      (15) 

 

 
7.1. Probability density and cumulative distribution functions 

 
Let 𝑋1, … , 𝑋𝑛 be a random sample of size 𝑛 from the 𝐾𝑤𝐺𝑜(𝑎, 𝑏, 𝜃, 𝛾) model. Then, the pdf 

and cdf of the 𝑖-th order statistic can be obtained from (14) and (15) by setting 𝐹𝑖+𝑠(𝑥) =

[∑ (−1)𝑘 (
𝑏

𝑘 + 1
)∞

𝑘=0 𝐺(𝑘+1)𝑎(x)]
𝑖+𝑠

.  From now on, we use an equation by Gradshteyn and 

Ryzhik (2000, Section 3.14) for a power series raised to a positive integer 𝑛 

 

(∑𝑤𝑟𝑢
𝑟

∞

𝑟=0

)

𝑛

=∑𝑐𝑛,𝑟𝑢
𝑟

∞

𝑟=0

, 

 
where the coefficients 𝑐𝑛,𝑟 (for 𝑟 = 1,2,…) are determined from the recurrence equation 

 

𝑐𝑛,𝑟 = (𝑟𝑤0)
−1∑[𝑗(𝑛 + 1) − 𝑟]

𝑟

𝑗=1

𝑤𝑗𝑐𝑟,𝑟−𝑗, 

 and 𝑐𝑛,0 = 𝑤0
𝑛. So, equations (14) and (15) can be expressed as 
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𝐹𝑖:𝑛(𝑥) =
1

𝐵(𝑖, 𝑛 − 𝑖 + 1)
∑ ∑

(−1)𝑚+𝑠

(𝑖 + 𝑠)

∞

𝑘,𝑚=0

𝑛−𝑖

𝑠=0

(
𝑛 − 𝑖
𝑠
) (
𝑎(𝑘 + 𝑖 + 𝑠)
𝑚 + 1

) 𝑐𝑖+𝑠,𝑘𝐺(𝑚+1)𝜃,𝛾(𝑥) 

and 

 

𝑓𝑖:𝑛(𝑥) =
1

𝐵(𝑖, 𝑛 − 𝑖 + 1)
∑ ∑

(−1)𝑚+𝑠

(𝑖 + 𝑠)

∞

𝑘,𝑚=0

𝑛−𝑖

𝑠=0

(
𝑛 − 𝑖
𝑠
) (
𝑎(𝑘 + 𝑖 + 𝑠)
𝑚 + 1

) 𝑐𝑖+𝑠,𝑘𝑔(𝑚+1)𝜃,𝛾(𝑥) 

 
The last equation reveals that the pdf of 𝑋𝑖:𝑛 can be given as a mixture of Go densities. The 

structural properties of  𝑋𝑖:𝑛 are then easily obtained from those of the Go distribution. 

 

 

7.2. Moments 

 
The 1-th moment of  𝑋𝑖:𝑛 follows as 

 

𝐸(𝑋𝑖:𝑛
𝑙 ) =

1

𝐵(𝑖, 𝑛 − 𝑖 + 1)
∑ ∑

(−1)𝑚+𝑠𝑐𝑖+𝑠,𝑘
(𝑖 + 𝑠)

∞

𝑘,𝑚=0

𝑛−𝑖

𝑠=0

(
𝑛 − 𝑖
𝑠
) (𝑎

(𝑘 + 𝑖 + 𝑠)
𝑚 + 1

)∫ 𝑥𝑙𝑔(𝑚+1)𝜃,𝛾(𝑥)
∞

0

𝑑𝑥

=
1

𝐵(𝑖, 𝑛 − 𝑖 + 1)
∑ ∑

(−1)𝑚+𝑠𝑐𝑖+𝑠,𝑘
(𝑖 + 𝑠)

∞

𝑘,𝑚=0

𝑛−𝑖

𝑠=0

(
𝑛 − 𝑖
𝑠
) (
𝑎(𝑘 + 𝑖 + 𝑠)
𝑚 + 1

) ×
𝑙!

𝛾𝑙
𝑒(𝑚+1)𝜃/𝛾𝑬1

𝑙−1 (
(𝑚 + 1)𝜃

𝛾
) .
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8. Shannon and Rényi Entropy 

 
The entropy of a random variable 𝑋 with density function 𝑓(𝑥) is a measure of variation of 

the uncertainty. The Shannon entropy is defined by Shannon (1948) as 

 

𝑆[𝑓(𝑥)] = 𝐸(𝑙𝑜𝑔[𝑓(𝑥)]). 

 
The Shannon entropy of 𝑋 is determined as 

 

𝑆[𝑓(𝑥)] = − 𝑙𝑜𝑔(𝑎𝑏𝜃) − 𝛾𝐸(𝑥) +
[𝑀𝑥(𝛾) − 1]𝜃

𝛾
+
(𝑎 − 1)[𝐶 + 𝜑(𝑏 + 1)]

𝑎
−
(𝑏 − 1)

𝑏
, 

where 𝐶 is the Euler's constant and 𝜑(∙) is the digamma function. 

 

Another popular entropy measure is the Rényi entropy defined by Rényi (1961) given by 

 

𝑅(𝑐) =
1

1 − 𝑐
𝑙𝑜𝑔 (∫ 𝑓𝑐(𝑥)

∞

−∞

) , 𝑐 > 0, 𝑐 ≠ 1. 

 
The Rényi entropy of 𝑋 is given by 

 

 

𝑅(𝑐) =
𝑐

1 − 𝑐
𝑙𝑜𝑔 𝛾 +

2 − 𝑐

1 − 𝑐
𝑙𝑜𝑔 𝜃 +

1

1 − 𝑐
𝑙𝑜𝑔 [ ∑ (−1)𝑘+𝑗+1(𝑐 + 𝑘)−𝑐𝑒(𝑘+𝑐)𝜃 𝛾⁄ (

(𝑏 − 1)𝑐
𝑗

) (
(𝑐 + 𝑗)𝑎 − 𝑐

𝑘
)𝛤 (𝑐,

(𝑘 + 𝑐)𝜃

𝛾
)

∞

𝑗,𝑘=0

] .
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9. Estimation 

 
We consider estimation of the parameters of the  𝐾𝑤𝐺𝑜  distribution by the method of 

maximum likelihood. Let 𝑥 = (𝑥1, … , 𝑥𝑛)
𝑇 be a sample of size 𝑛 from the 𝐾𝑤𝐺𝑜 distribution 

with unknown parameter vector Θ = (𝑎, 𝑏, 𝜃, 𝛾)𝑇 . The total log-likelihood function for Θ is 

 

ℓ(𝛩) = 𝑙𝑜𝑔(𝑎𝑏𝜃) + 𝛾𝑥 −
𝜃

𝛾
(𝑒𝛾𝑥 − 1)𝑏 + (𝑎 − 1) 𝑙𝑜𝑔 [1 − 𝑒𝑥𝑝 {−

𝜃

𝛾
(𝑒𝛾𝑥 − 1)}] .        (16) 

 
The log-likelihood can be maximized either directly or by solving the nonlinear likelihood 

equations obtained by differentiating (16). We obtain the maximum likelihood estimates (MLEs) 

using the components of the score vector 𝑈(Θ) given by 

 

𝑈𝑎(𝛩) =
𝜕ℓ(𝛩)

𝜕𝑎
=
1

𝑎
+ 𝑙𝑜𝑔 [1 − 𝑒𝑥𝑝 {−

𝜃

𝛾
(𝑒𝛾𝑥 − 1)}] , 

𝑈𝑏(𝛩) =
𝜕ℓ(𝛩)

𝜕𝑏
=
1

𝑏
−
𝜃

𝛾
(𝑒𝛾𝑥 − 1), 

𝑈𝜃(𝛩) =
𝜕ℓ(𝛩)

𝜕𝜃
=
1

𝜃
−
𝜃(𝑒𝛾𝑥 − 1)

𝛾
{𝑏 + (𝑎 − 1)

𝑒𝑥𝑝 {−
𝜃
𝛾
(𝑒𝛾𝑥 − 1)}

[1 − 𝑒𝑥𝑝 {−
𝜃
𝛾
(𝑒𝛾𝑥 − 1)}]

}, 

𝑈𝛾(𝛩) =
𝜕ℓ(𝛩)

𝜕𝛾
= 𝑥 + [

(𝑒𝛾𝑥 − 1)

𝛾
− 𝑥𝑒𝛾𝑥]{

𝑏𝜃

𝛾
−
(𝑎 − 1)𝜃

𝛾

𝑒𝑥𝑝 {−
𝜃
𝛾
(𝑒𝛾𝑥 − 1)}

[1 − 𝑒𝑥𝑝 {−
𝜃
𝛾
(𝑒𝛾𝑥 − 1)}]

}. 

 
For interval estimation and hypothesis tests on the model parameters, we require the observed 

information matrix. The 4 × 4 unit observed information matrix 𝐽 = 𝐽𝑛(Θ) is determined by 

 

𝐽 = −

[
 
 
 
 
𝐽𝑎𝑎
𝐽𝑏𝑎
𝐽𝜃𝑎
𝐽𝛾𝑎

𝐽𝑎𝑏
𝐽𝑏𝑏
𝐽𝜃𝑏
𝐽𝛾𝑏

𝐽𝑎𝜃
𝐽𝑏𝜃
𝐽𝜃𝜃
𝐽𝛾𝜃

𝐽𝑎𝛾
𝐽𝑏𝛾
𝐽𝜃𝛾
𝐽𝛾𝛾]
 
 
 
 

 

 
whose elements are given in the Appendix. 
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10. Application 

 
We emphasize the flexibility of the new distribution by means of a real data set and fit the 

𝐺𝑜, exponentiated Gompertz (𝐸𝑥𝑝𝐺𝑜), beta Gompertz (𝐵𝐺𝑜) and 𝐾𝑤𝐺𝑜 distributions. 

 
The cdf of the 𝐸𝑥𝑝𝐺𝑜 distribution is given by 

 

𝐻𝑎(𝑥) = [1 − 𝑒𝑥𝑝 {−
𝜃

𝛾
(𝑒𝛾𝑥 − 1)}]

𝑎

, 

 
and the pdf reduces to (for a positive power 𝑎 > 0) 

 

ℎ𝑎(𝑥) = 𝑎𝜃 𝑒𝑥𝑝 {𝛾𝑥 −
𝜃

𝛾
(𝑒𝛾𝑥 − 1)} [1 − 𝑒𝑥𝑝 {−

𝜃

𝛾
(𝑒𝛾𝑥 − 1)}]

𝑎−1

 . 

 
Eugene et al. (2002) defined the beta class of distributions. The 𝐵𝐺𝑜 pdf can be expressed as 

 

𝑓(𝑥) =
𝜃 𝑒𝑥𝑝 {𝛾𝑥 −

𝛽𝜃
𝛾
(𝑒𝛾𝑥 − 1)}

𝐵(𝛼, 𝛽)
[1 − 𝑒𝑥𝑝 {−

𝜃

𝛾
(𝑒𝛾𝑥 − 1)}]

𝛼−1

, 

 

 
where 𝐵(𝛼, 𝛽) = Γ(𝛼)Γ(𝛽)/Γ(𝛼 + 𝛽) is the beta function. 

 

The data are the proportions of HIV-infected people in 137 countries (Rushton and Templer, 

2009). The MLEs of the unknown parameters (standard errors in parentheses) of the fitted models 

are given in Table 1. Further, the values of the statistics AIC (Akaike Information Criterion), 

AICC (Akaike Information Criterion with Correction) and BIC (Bayesian Information Criterion) 

are calculated for the 𝐾𝑤𝐺𝑜, 𝐵𝐺𝑜, 𝐸𝑥𝑝𝐺𝑜  and 𝐺𝑜  distributions. The Cramér-von Mises and 

Anderson-Darling (W and A for short) statistics are calculated for the 𝐾𝑤𝐺𝑜, 𝐸𝑥𝑝𝐺𝑜 and 𝐺𝑜 

models. The computations are performed using the AdequacyModel package in R. Based on 

the values of these statistics, we can conclude that the 𝐾𝑤𝐺𝑜 model is better than the other 

distributions to fit these data. 
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Table 1: MLEs and goodness-of-fit statistics 

 

 
Figure 5  displays the histogram of the data and the four fitted KwGo, BGo, ExpGo and Go 

densities. We can verify that the KwGo distribution provides an adequate fit to these data. 

 

 

 

 

 

Figure 5: Plots of the fitted models to the current data. 

 

Models a b 𝜃 𝛾 AIC AICC BIC W A 

KwGo  0.477 

(0.050) 

 7.535 

(3.057) 

 0.010 

(0.008) 

 0.000 

(0.024) 

262.600 263.040 272.858 1.245 7.479 

BGo  0.374 

(0.055) 

 4.645 

(6.053) 

 0.033 

(0.047) 

 0.000 

(0.020) 

284.434 284.873 294.691 1.503 8.810 

ExpGo  0.363 

(0.054) 

 1.000 

   - 

 0.173 

(0.061) 

 0.000 

(0.020) 

285.95 286.210 293.643 1.539 8.993 

Go  1.000 

   - 

 1.000 

   - 

 0.057 

(0.057) 

 0.010 

(0.010) 

376.356 376.485 381.485 1.543 9.009 
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11. Concluding remarks 

 
We study a new four-parameter model named the Kwmaraswamy Gompertz distribution. We 

provide the moments, generating function, Shannon and Rényi entropies, mean deviations, 

Bonferroni and Lorenz curves and the moments of the order statistics. We discuss the estimation 

of the parameters by maximum likelihood. One application of the new distribution is given to 

prove its flexibility to fit real lifetime data. 

 

 

 

 

 

Appendix 

The elements of the unit observed information matrix 𝐽 = 𝐽𝑛(Θ) are  
 

𝐽𝑎𝑎 = 
𝜕2𝑙𝑜𝑔

𝜕𝑎2
= − 

1

𝑎2
 ,                                                             𝐽𝑏𝑏 = 

𝜕2𝑙𝑜𝑔

𝜕𝑏2
= − 

1

𝑏2
 , 

𝐽𝑎 𝜃 = 
𝜕2𝑙𝑜𝑔

𝜕𝑎𝜕𝜃
= − 

(𝑒𝛾𝑥 – 1) 

𝛾
 

𝑒𝑥𝑝{ −
𝜃

𝛾
 (𝑒𝛾𝑥 – 1) }

[1−𝑒𝑥𝑝{ −
𝜃

𝛾
 (𝑒𝛾𝑥 – 1) }]

 ,               𝐽𝑏𝜃 = 
𝜕2𝑙𝑜𝑔

𝜕𝑏𝜕𝜃
= − 

(𝑒𝛾𝑥 – 1)

𝛾
,   𝐽𝑎 𝛾  =

 
𝜕2𝑙𝑜𝑔

𝜕𝑎𝜕𝛾
 =  (

𝑒𝛾𝑥  (𝑥 𝛾−1)+ 1

𝛾2
)

𝑒𝑥𝑝{ −
𝜃

𝛾
 (𝑒𝛾𝑥 – 1) } 𝜃

[1−𝑒𝑥𝑝{ −
𝜃

𝛾
 (𝑒𝛾𝑥 – 1) }]

 ,          𝐽𝑏 𝛾  =  
𝜕2𝑙𝑜𝑔

𝜕𝑏𝜕𝛾
 =  −  

𝑒𝛾𝑥  (𝑥 𝛾−1)+ 1

𝛾2 𝜃−1
, 

𝐽𝜃𝑎  =  
𝜕2𝑙𝑜𝑔

𝜕𝜃𝜕𝑎
 =  

(𝑒𝛾𝑥 – 1) 𝑒𝑥𝑝{ −
𝜃

𝛾
 (𝑒𝛾𝑥 – 1) } 𝜃

[1−𝑒𝑥𝑝{ −
𝜃

𝛾
 (𝑒𝛾𝑥 – 1) }]𝛾

 ,                          𝐽𝜃𝑏 = 
𝜕2𝑙𝑜𝑔

𝜕𝜃𝜕𝑏
= − 

(𝑒𝛾𝑥 – 1)

𝛾
,    

𝐽𝛾𝑎  =  
𝜕2𝑙𝑜𝑔

𝜕𝛾𝜕𝑎
 =  

𝜃 𝑒𝑥𝑝{ −
𝜃

𝛾
 (𝑒𝛾𝑥 – 1) } [𝑒𝛾𝑥  (𝑥 𝛾−1)+ 1]

𝛾^2[1−𝑒𝑥𝑝{ −
𝜃

𝛾
 (𝑒𝛾𝑥 – 1) }]

 ,             𝐽𝛾𝑏 = 
𝜕2𝑙𝑜𝑔

𝜕𝛾𝜕𝑏
= − 

[𝑒𝛾𝑥  (𝑥 𝛾−1)+ 1]𝜃

𝛾2
,   

𝐽𝜃𝜃 = 
𝜕2𝑙𝑜𝑔

𝜕𝜃2
= − 

1

𝜃2
  + (

𝑒𝛾𝑥 – 1 

𝛾
)
2

 
(𝑎−1)𝑒𝑥𝑝{−

𝜃

𝛾
 (𝑒𝛾𝑥 – 1)}

[1−𝑒𝑥𝑝{ −
𝜃

𝛾
 (𝑒𝛾𝑥 – 1) }]

2 ,  
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𝐽𝜃𝛾 = 
𝜕2𝑙𝑜𝑔

𝜕𝜃𝜕𝛾
=  − 

𝑒𝛾𝑥  (𝑥 𝛾 − 1) +  1 

𝛾2
 (
(𝑎 − 1) 𝑒𝑥𝑝 {−

𝜃
𝛾
 (𝑒𝛾𝑥 –  1)}

[1 − 𝑒𝑥𝑝 { –
𝜃
𝛾
 (𝑒𝛾𝑥 –  1) }]

–  𝑏), 

𝐽𝛾𝜃 = 
𝜕2𝑙𝑜𝑔

𝜕𝜃2
= 

{
 

 
 𝑏 + 

(𝑎 − 1) 𝑒𝑥𝑝 {−
𝜃
𝛾
 (𝑒𝛾𝑥 –  1)}

[1 − 𝑒𝑥𝑝 { –
𝜃
𝛾
 (𝑒𝛾𝑥 –  1) }]

 +  
(𝑎 − 1)𝜃 𝑒𝑥𝑝 { −

𝜃
𝛾
 (𝑒𝛾𝑥 –  1) } 

𝛾 [1 − 𝑒𝑥𝑝 { −
𝜃
𝛾  (𝑒

𝛾𝑥 –  1) }]
2

}
 

 
 

× [
𝑒𝛾𝑥  (𝑥 𝛾−1)+ 1 

𝛾2
], 

𝐽𝛾𝛾 = 
𝜕2𝑙𝑜𝑔

𝜕𝛾2
= {  

𝑥2 𝑦2𝑒𝛾𝑥

𝛾3
    
(𝑎 − 1)𝜃 𝑒𝑥𝑝 { –

𝜃
𝛾
 (𝑒𝛾𝑥 –  1) } 

𝛾 [1 − 𝑒𝑥𝑝 { –
𝜃
𝛾
 (𝑒𝛾𝑥 –  1) }]

2 } [
(𝑎 − 1)𝜃 𝑒𝑥𝑝 {−

𝜃
𝛾
 (𝑒𝛾𝑥 –  1)}

[1 − 𝑒𝑥𝑝 { –
𝜃
𝛾
 (𝑒𝛾𝑥 –  1) }]

–  𝑏𝜃] 

+ [ 
𝑒𝛾𝑥  (𝑥 𝛾−1)+ 1 

𝛾2
] { 

(𝑎−1)𝜃2  𝑒𝑥𝑝{ −
𝜃

𝛾
 (𝑒𝛾𝑥 – 1) }[𝑒𝛾𝑥  (𝑥 𝛾−1)+ 1] 

𝛾2[1−𝑒𝑥𝑝{ −
𝜃

𝛾
 (𝑒𝛾𝑥 – 1) }]

2 }. 

 

 

 

 

 

 

 

 

 

 

 

 

 



258                                         The Kumaraswamy Gompertz distribution 
 

References 

[1] Cordeiro, G.M. and de Castro, M.  A new family of generalized distributions.  Journal of 

Statistical Computation and Simulation 81.7 (2011): 883-898. 

 

[2]  El-Gohary, A., Alshamrani, A. and Al-Otaibi,A.N.  The generalized Gompertz distribution.  

Applied Mathematical Modelling 37.1 (2013): 13-24. 

 

[3] Eugene, N., Lee, C. and Famoye, F.  Beta-normal distribution and its applications. 

Communications in Statistics - Theory and Methods  31.4 (2002): 497-512. 

 

[4]  Gradshteyn, I. S. and Ryzhik, I. M.  Tables of integrals, series, and products. New York: 

Academic Press (2000). 

 

[5] Jones, M.C.  Kumaraswamy's distribution: A beta-type distribution with some tractability 

advantages. Statistical Methodology 6.1 (2009): 70-81. 

 

[6] Kenney, J.F. and Keeping, E.S. Mathematics of Statistics, part 1. Princeton, NJ: Van 

Nostrand (1962): 101-102. 

 

[7] Kumaraswamy, P. A generalized probability density function for double-bounded random 

processes. Journal of Hydrology 46.1 (1980): 79-88. 

 

[8] Kunimura, D. The Gompertz distribution-estimation of parameters. Actuarial Research 

Clearing House 2 (1998): 65-76. 

 

[9] Marshall, A.W. and Olkin, I. Life distributions: Structure of nonparametric, semiparametric 

and parametric families. Springer (2007). 

 

[10] Milgram, M. The generalized integro-exponential function. Mathematics of Computation 

44.170 (1985): 443-458. 

 

[11] Nadarajah, S., Cordeiro, G.M. and Ortega, E.M.M. General results for the Kumaraswamy-G 

distribution. Journal of Statistical Computation and Simulation 82.7 (2012): 951-979. 

[12] Pollard, J.H. and Valkovics, E.J.  The Gompertz distribution and its applications. Genus 

48(3-4) (1992): 15-28. 

 

[13] Rushton, J. P. and Templer, D.I.  National differences in intelligence, crime, income, and 

skin color. Intelligence 37.4 (2009): 341-346. 

 

[14] Shannon, C.E.  A mathematical theory of communication.  Bell System Technical Journal 

27 (1948): 379-423. 

 

 



Raquel C. da Silva , Jeniffer J. D. Sanchez, F ábio P. Lima, Gauss M. Cordeiro.        259 
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